Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 23(1): 184-192, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32939896

RESUMO

The effects of habitat fragmentation on plant populations are complex, as it might disrupt many ecological processes, including plant reproduction and plant-animal interactions. Gypsum specialist plants may be resilient to fragmentation due to their evolutionary history in fragmented landscapes, but the effects on non-specialist plants occurring in gypsum are unknown. We conducted a study focusing on different aspects of the reproductive cycle of Astragalus incanus subsp. incanus, a plant facultatively linked to gypsum soils. We focused on plant fecundity and pre-dispersal predation, obtained from field observations, and offspring performance, assessed in a common garden. Beyond fragment size and connectivity, we also considered habitat quality, population size and density and plant size as predictors. Fragment size and connectivity had no effect on plant fecundity, but jointly determined fruit predation, while fragment size was positively related to offspring growth. Population density, rather than population size, had a positive effect on predation but negatively affected plant fecundity and offspring performance. Habitat quality reduced both plant fecundity and predation incidence. In this non-specialist species, habitat fragmentation, population features and habitat quality affect different facets of plant performance. Predation was the only process clearly affected by fragmentation variables, fecundity mainly depended on population features and offspring performance and was better explained by mother plant identity. Our results show the need to consider habitat and population features together with fragment size and connectivity in order to assess the effects of fragmentation. Importantly, these effects can involve different aspects of plant reproduction, including plant-animal interactions.


Assuntos
Astrágalo/fisiologia , Sulfato de Cálcio , Ecossistema , Frutas , Herbivoria , Animais , Fertilidade
2.
AoB Plants ; 12(2): plaa006, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32190234

RESUMO

Populations of widely distributed species often exhibit geographic variation in functional traits in response to environmental heterogeneity. Such trait variation may be the result of different adaptive mechanisms, including genetically based differentiation, phenotypic plasticity or a combination of both. Disentangling the genetic and environmental components of trait variation may be particularly interesting in crop wild relatives, since they may provide unique reservoirs of genetic diversity for crop improvement. In this study, we assessed ecotypic differentiation and patterns of plasticity to drought in populations of Lupinus angustifolius, a Mediterranean crop wild relative, from two climatically distinct regions in the Iberian Peninsula. Using an outdoor common garden, we compared phenotypic responses of inbred maternal families to two ecologically meaningful water availability treatments (drought and high-moisture). We measured 18 different functional traits related to growth, morphology, phenology and reproduction. Plants in the drought treatment grew less, had lower leaf chlorophyll content and photochemical efficiency, but also reproduced faster, produced larger seeds and altered leaflet morphology through increased leaflet thickness, higher leaflet dry matter content and lower specific leaf area. We also found significant differences between regions that likely reflect adaptation to climatically distinct environments, with populations from the south showing a faster onset of reproduction, higher leaf thickness and higher seed size, consistent with the drier conditions experienced in southern sites. Plasticity to drought was in most cases in the same direction as quantitative genetic differentiation (i.e. cogradient variation), providing evidence of the adaptive value of the plastic change. Our results show that both genetic differentiation and plasticity can generate adaptive phenotypic variation in L. angustifolius, and help to identify potentially valuable genetic resources to incorporate into breeding programmes.

3.
Plant Biol (Stuttg) ; 21(5): 942-950, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30980687

RESUMO

Crop wild relatives can be a useful source of genotypes that maximise crop survival and yield in specific habitats. Lupinus angustifolius is an annual forb with crop varieties derived from a narrow genetic basis but that are cultivated worldwide. Its seeds have high nutritional value, but they naturally contain alkaloids with anti-nutritive factors. The study of its wild populations can be useful to find genotypes that contribute to higher climate resilience and greater yield under stressing environmental conditions. Using a common garden, we evaluated ecotypic differentiation in four natural populations from two contrasting latitudes in terms of plant biomass, seed mass and number, alkaloid content in seeds for the three main alkaloids present in the plant and seed colour, including its possible influence on post-dispersal predation. Correlations among traits were also assessed. We found differences among populations for all traits except final biomass. Northern populations had lighter seeds and a tendency to yield more seeds when they produced white seeds, compared to southern populations and variegated seeds. Regardless of latitude, populations showed differences in alkaloid concentration, with all three alkaloids found generally in high or low concentrations in each population. Proportion of white seed morphs varied in each population. Seed colour did not influence predator preference. In addition, white seed colour was related to a low alkaloid content. Our results evidence the existence of natural ecotypic differentiation in L. angustifolius not only due to latitudinal range, but also to local environmental factors. White seed coat colour could be used as a visual clue for identification of low-alkaloid genotypes, a priority trait in L. angustifolius breeding programmes.


Assuntos
Alcaloides/metabolismo , Lupinus/metabolismo , Sementes/metabolismo , Alcaloides/isolamento & purificação , Cor , Produtos Agrícolas , Herbivoria , Lupinus/anatomia & histologia , Fenótipo , Sementes/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...